This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtr3 | |- ( ( Ord B /\ Ord C ) -> ( A e. B -> ( A e. C \/ C e. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelss | |- ( ( A e. B /\ -. A e. C ) -> -. B C_ C ) |
|
| 2 | 1 | adantl | |- ( ( ( Ord B /\ Ord C ) /\ ( A e. B /\ -. A e. C ) ) -> -. B C_ C ) |
| 3 | ordtri1 | |- ( ( Ord B /\ Ord C ) -> ( B C_ C <-> -. C e. B ) ) |
|
| 4 | 3 | con2bid | |- ( ( Ord B /\ Ord C ) -> ( C e. B <-> -. B C_ C ) ) |
| 5 | 4 | adantr | |- ( ( ( Ord B /\ Ord C ) /\ ( A e. B /\ -. A e. C ) ) -> ( C e. B <-> -. B C_ C ) ) |
| 6 | 2 5 | mpbird | |- ( ( ( Ord B /\ Ord C ) /\ ( A e. B /\ -. A e. C ) ) -> C e. B ) |
| 7 | 6 | expr | |- ( ( ( Ord B /\ Ord C ) /\ A e. B ) -> ( -. A e. C -> C e. B ) ) |
| 8 | 7 | orrd | |- ( ( ( Ord B /\ Ord C ) /\ A e. B ) -> ( A e. C \/ C e. B ) ) |
| 9 | 8 | ex | |- ( ( Ord B /\ Ord C ) -> ( A e. B -> ( A e. C \/ C e. B ) ) ) |