This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordelinel | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or3 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |
| 3 | eleq1a | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) → 𝐴 ∈ 𝐶 ) ) | |
| 4 | eleq1a | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐵 = ( 𝐴 ∩ 𝐵 ) → 𝐵 ∈ 𝐶 ) ) | |
| 5 | 3 4 | orim12d | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |
| 6 | 2 5 | syl5com | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 → ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |
| 7 | ordin | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) | |
| 8 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 9 | ordtr2 | ⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) | |
| 10 | 8 9 | mpani | ⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐶 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 11 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 12 | ordtr2 | ⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) | |
| 13 | 11 12 | mpani | ⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 14 | 10 13 | jaod | ⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐶 ) → ( ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 15 | 7 14 | stoic3 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 16 | 6 15 | impbid | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶 ) ) ) |