This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordelinel | |- ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A i^i B ) e. C <-> ( A e. C \/ B e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or3 | |- ( ( Ord A /\ Ord B ) -> ( A = ( A i^i B ) \/ B = ( A i^i B ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( Ord A /\ Ord B /\ Ord C ) -> ( A = ( A i^i B ) \/ B = ( A i^i B ) ) ) |
| 3 | eleq1a | |- ( ( A i^i B ) e. C -> ( A = ( A i^i B ) -> A e. C ) ) |
|
| 4 | eleq1a | |- ( ( A i^i B ) e. C -> ( B = ( A i^i B ) -> B e. C ) ) |
|
| 5 | 3 4 | orim12d | |- ( ( A i^i B ) e. C -> ( ( A = ( A i^i B ) \/ B = ( A i^i B ) ) -> ( A e. C \/ B e. C ) ) ) |
| 6 | 2 5 | syl5com | |- ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A i^i B ) e. C -> ( A e. C \/ B e. C ) ) ) |
| 7 | ordin | |- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
|
| 8 | inss1 | |- ( A i^i B ) C_ A |
|
| 9 | ordtr2 | |- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( ( A i^i B ) C_ A /\ A e. C ) -> ( A i^i B ) e. C ) ) |
|
| 10 | 8 9 | mpani | |- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( A e. C -> ( A i^i B ) e. C ) ) |
| 11 | inss2 | |- ( A i^i B ) C_ B |
|
| 12 | ordtr2 | |- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( ( A i^i B ) C_ B /\ B e. C ) -> ( A i^i B ) e. C ) ) |
|
| 13 | 11 12 | mpani | |- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( B e. C -> ( A i^i B ) e. C ) ) |
| 14 | 10 13 | jaod | |- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( A e. C \/ B e. C ) -> ( A i^i B ) e. C ) ) |
| 15 | 7 14 | stoic3 | |- ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A e. C \/ B e. C ) -> ( A i^i B ) e. C ) ) |
| 16 | 6 15 | impbid | |- ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A i^i B ) e. C <-> ( A e. C \/ B e. C ) ) ) |