This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opwf | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> <. A , B >. e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> <. A , B >. = { { A } , { A , B } } ) |
|
| 2 | snwf | |- ( A e. U. ( R1 " On ) -> { A } e. U. ( R1 " On ) ) |
|
| 3 | prwf | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> { A , B } e. U. ( R1 " On ) ) |
|
| 4 | prwf | |- ( ( { A } e. U. ( R1 " On ) /\ { A , B } e. U. ( R1 " On ) ) -> { { A } , { A , B } } e. U. ( R1 " On ) ) |
|
| 5 | 2 3 4 | syl2an2r | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> { { A } , { A , B } } e. U. ( R1 " On ) ) |
| 6 | 1 5 | eqeltrd | |- ( ( A e. U. ( R1 " On ) /\ B e. U. ( R1 " On ) ) -> <. A , B >. e. U. ( R1 " On ) ) |