This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995) Shorten and reduce axiom usage. (Revised by TM, 29-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | optocl.1 | ⊢ 𝐷 = ( 𝐵 × 𝐶 ) | |
| optocl.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| optocl.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜑 ) | ||
| Assertion | optocl | ⊢ ( 𝐴 ∈ 𝐷 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | optocl.1 | ⊢ 𝐷 = ( 𝐵 × 𝐶 ) | |
| 2 | optocl.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | optocl.3 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜑 ) | |
| 4 | elxpi | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) | |
| 5 | 2 | eqcoms | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) |
| 6 | 3 5 | imbitrid | ⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝜓 ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝜓 ) |
| 8 | 7 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) → 𝜓 ) |
| 9 | 4 8 | syl | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝜓 ) |
| 10 | 9 1 | eleq2s | ⊢ ( 𝐴 ∈ 𝐷 → 𝜓 ) |