This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
optocl
Metamath Proof Explorer
Description: Implicit substitution of class for ordered pair. (Contributed by NM , 5-Mar-1995) Shorten and reduce axiom usage. (Revised by TM , 29-Dec-2025)
Ref
Expression
Hypotheses
optocl.1
⊢ D = B × C
optocl.2
⊢ x y = A → φ ↔ ψ
optocl.3
⊢ x ∈ B ∧ y ∈ C → φ
Assertion
optocl
⊢ A ∈ D → ψ
Proof
Step
Hyp
Ref
Expression
1
optocl.1
⊢ D = B × C
2
optocl.2
⊢ x y = A → φ ↔ ψ
3
optocl.3
⊢ x ∈ B ∧ y ∈ C → φ
4
elxpi
⊢ A ∈ B × C → ∃ x ∃ y A = x y ∧ x ∈ B ∧ y ∈ C
5
2
eqcoms
⊢ A = x y → φ ↔ ψ
6
3 5
imbitrid
⊢ A = x y → x ∈ B ∧ y ∈ C → ψ
7
6
imp
⊢ A = x y ∧ x ∈ B ∧ y ∈ C → ψ
8
7
exlimivv
⊢ ∃ x ∃ y A = x y ∧ x ∈ B ∧ y ∈ C → ψ
9
4 8
syl
⊢ A ∈ B × C → ψ
10
9 1
eleq2s
⊢ A ∈ D → ψ