This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oposlem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| oposlem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| oposlem.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| oposlem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| oposlem.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| oposlem.f | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| oposlem.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| Assertion | oposlem | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oposlem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | oposlem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | oposlem.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 4 | oposlem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 5 | oposlem.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 6 | oposlem.f | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 7 | oposlem.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 8 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 10 | 1 8 9 2 3 4 5 6 7 | isopos | ⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom ( lub ‘ 𝐾 ) ∧ 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| 11 | 10 | simprbi | ⊢ ( 𝐾 ∈ OP → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ 𝑋 ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ↔ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 14 | 2fveq3 | ⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) | |
| 15 | id | ⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) | |
| 16 | 14 15 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) |
| 17 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) | |
| 18 | 12 | breq2d | ⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ↔ ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ↔ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 20 | 13 16 19 | 3anbi123d | ⊢ ( 𝑥 = 𝑋 → ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 21 | 15 12 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) ) |
| 22 | 21 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ↔ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ) ) |
| 23 | 15 12 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) ) |
| 24 | 23 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ↔ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) |
| 25 | 20 22 24 | 3anbi123d | ⊢ ( 𝑥 = 𝑋 → ( ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ↔ ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) ) |
| 26 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ 𝑌 ) ) | |
| 28 | 27 | breq1d | ⊢ ( 𝑦 = 𝑌 → ( ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| 29 | 26 28 | imbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ↔ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 30 | 29 | 3anbi3d | ⊢ ( 𝑦 = 𝑌 → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 31 | 30 | 3anbi1d | ⊢ ( 𝑦 = 𝑌 → ( ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ↔ ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) ) |
| 32 | 25 31 | rspc2v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) ) |
| 33 | 11 32 | mpan9 | ⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) |
| 34 | 33 | 3impb | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ∧ ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) ∧ ( 𝑋 ∨ ( ⊥ ‘ 𝑋 ) ) = 1 ∧ ( 𝑋 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) |