This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oppfrcl . (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| oppfrcl.2 | ⊢ Rel 𝑅 | ||
| Assertion | oppfrcllem | ⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| 2 | oppfrcl.2 | ⊢ Rel 𝑅 | |
| 3 | 0nelrel0 | ⊢ ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 ) | |
| 4 | 2 3 | ax-mp | ⊢ ¬ ∅ ∈ 𝑅 |
| 5 | nelne2 | ⊢ ( ( 𝐺 ∈ 𝑅 ∧ ¬ ∅ ∈ 𝑅 ) → 𝐺 ≠ ∅ ) | |
| 6 | 1 4 5 | sylancl | ⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |