This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppfval | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 oppFunc 𝐺 ) = 〈 𝐹 , tpos 𝐺 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 2 | 1 | brrelex12i | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 3 | oppfvalg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 5 | oppfvallem | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) | |
| 6 | 5 | iftrued | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) = 〈 𝐹 , tpos 𝐺 〉 ) |
| 7 | 4 6 | eqtrd | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 oppFunc 𝐺 ) = 〈 𝐹 , tpos 𝐺 〉 ) |