This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppfval | |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc | |- Rel ( C Func D ) |
|
| 2 | 1 | brrelex12i | |- ( F ( C Func D ) G -> ( F e. _V /\ G e. _V ) ) |
| 3 | oppfvalg | |- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
|
| 4 | 2 3 | syl | |- ( F ( C Func D ) G -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 5 | oppfvallem | |- ( F ( C Func D ) G -> ( Rel G /\ Rel dom G ) ) |
|
| 6 | 5 | iftrued | |- ( F ( C Func D ) G -> if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) = <. F , tpos G >. ) |
| 7 | 4 6 | eqtrd | |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) |