This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| oppfrcl.2 | ⊢ Rel 𝑅 | ||
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | ||
| oppfrcl2.4 | ⊢ ( 𝜑 → 𝐹 = 〈 𝐴 , 𝐵 〉 ) | ||
| Assertion | oppfrcl2 | ⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑅 ) | |
| 2 | oppfrcl.2 | ⊢ Rel 𝑅 | |
| 3 | oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘ 𝐹 ) | |
| 4 | oppfrcl2.4 | ⊢ ( 𝜑 → 𝐹 = 〈 𝐴 , 𝐵 〉 ) | |
| 5 | 1 2 3 | oppfrcl | ⊢ ( 𝜑 → 𝐹 ∈ ( V × V ) ) |
| 6 | 4 5 | eqeltrrd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) |
| 7 | 0nelxp | ⊢ ¬ ∅ ∈ ( V × V ) | |
| 8 | nelne2 | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ∧ ¬ ∅ ∈ ( V × V ) ) → 〈 𝐴 , 𝐵 〉 ≠ ∅ ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ≠ ∅ ) |
| 10 | opprc | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → 〈 𝐴 , 𝐵 〉 = ∅ ) | |
| 11 | 10 | necon1ai | ⊢ ( 〈 𝐴 , 𝐵 〉 ≠ ∅ → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |