This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfrcl.1 | ||
| oppfrcl.2 | |||
| oppfrcl.3 | No typesetting found for |- G = ( oppFunc ` F ) with typecode |- | ||
| oppfrcl2.4 | |||
| Assertion | oppfrcl2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | ||
| 2 | oppfrcl.2 | ||
| 3 | oppfrcl.3 | Could not format G = ( oppFunc ` F ) : No typesetting found for |- G = ( oppFunc ` F ) with typecode |- | |
| 4 | oppfrcl2.4 | ||
| 5 | 1 2 3 | oppfrcl | |
| 6 | 4 5 | eqeltrrd | |
| 7 | 0nelxp | ||
| 8 | nelne2 | ||
| 9 | 6 7 8 | sylancl | |
| 10 | opprc | ||
| 11 | 10 | necon1ai | |
| 12 | 9 11 | syl |