This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an opposite functor of a class is a functor, then the two components of the original class must be sets. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfrcl.1 | |- ( ph -> G e. R ) |
|
| oppfrcl.2 | |- Rel R |
||
| oppfrcl.3 | |- G = ( oppFunc ` F ) |
||
| oppfrcl2.4 | |- ( ph -> F = <. A , B >. ) |
||
| Assertion | oppfrcl2 | |- ( ph -> ( A e. _V /\ B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | |- ( ph -> G e. R ) |
|
| 2 | oppfrcl.2 | |- Rel R |
|
| 3 | oppfrcl.3 | |- G = ( oppFunc ` F ) |
|
| 4 | oppfrcl2.4 | |- ( ph -> F = <. A , B >. ) |
|
| 5 | 1 2 3 | oppfrcl | |- ( ph -> F e. ( _V X. _V ) ) |
| 6 | 4 5 | eqeltrrd | |- ( ph -> <. A , B >. e. ( _V X. _V ) ) |
| 7 | 0nelxp | |- -. (/) e. ( _V X. _V ) |
|
| 8 | nelne2 | |- ( ( <. A , B >. e. ( _V X. _V ) /\ -. (/) e. ( _V X. _V ) ) -> <. A , B >. =/= (/) ) |
|
| 9 | 6 7 8 | sylancl | |- ( ph -> <. A , B >. =/= (/) ) |
| 10 | opprc | |- ( -. ( A e. _V /\ B e. _V ) -> <. A , B >. = (/) ) |
|
| 11 | 10 | necon1ai | |- ( <. A , B >. =/= (/) -> ( A e. _V /\ B e. _V ) ) |
| 12 | 9 11 | syl | |- ( ph -> ( A e. _V /\ B e. _V ) ) |