This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of Adamek p. 25. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-oppc | ⊢ oppCat = ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | coppc | ⊢ oppCat | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑓 |
| 4 | csts | ⊢ sSet | |
| 5 | chom | ⊢ Hom | |
| 6 | cnx | ⊢ ndx | |
| 7 | 6 5 | cfv | ⊢ ( Hom ‘ ndx ) |
| 8 | 3 5 | cfv | ⊢ ( Hom ‘ 𝑓 ) |
| 9 | 8 | ctpos | ⊢ tpos ( Hom ‘ 𝑓 ) |
| 10 | 7 9 | cop | ⊢ 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 |
| 11 | 3 10 4 | co | ⊢ ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) |
| 12 | cco | ⊢ comp | |
| 13 | 6 12 | cfv | ⊢ ( comp ‘ ndx ) |
| 14 | vu | ⊢ 𝑢 | |
| 15 | cbs | ⊢ Base | |
| 16 | 3 15 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 17 | 16 16 | cxp | ⊢ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) |
| 18 | vz | ⊢ 𝑧 | |
| 19 | 18 | cv | ⊢ 𝑧 |
| 20 | c2nd | ⊢ 2nd | |
| 21 | 14 | cv | ⊢ 𝑢 |
| 22 | 21 20 | cfv | ⊢ ( 2nd ‘ 𝑢 ) |
| 23 | 19 22 | cop | ⊢ 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 |
| 24 | 3 12 | cfv | ⊢ ( comp ‘ 𝑓 ) |
| 25 | c1st | ⊢ 1st | |
| 26 | 21 25 | cfv | ⊢ ( 1st ‘ 𝑢 ) |
| 27 | 23 26 24 | co | ⊢ ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) |
| 28 | 27 | ctpos | ⊢ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) |
| 29 | 14 18 17 16 28 | cmpo | ⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) |
| 30 | 13 29 | cop | ⊢ 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 |
| 31 | 11 30 4 | co | ⊢ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) |
| 32 | 1 2 31 | cmpt | ⊢ ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 33 | 0 32 | wceq | ⊢ oppCat = ( 𝑓 ∈ V ↦ ( ( 𝑓 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑓 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) , 𝑧 ∈ ( Base ‘ 𝑓 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑓 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |