This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oppcup3 . (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcup3lem.1 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) | |
| oppcup3lem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| oppcup3lem.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ) | ||
| Assertion | oppcup3lem | ⊢ ( 𝜑 → ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcup3lem.1 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) | |
| 2 | oppcup3lem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 3 | oppcup3lem.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ) | |
| 4 | eqeq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) | |
| 5 | 4 | reubidv | ⊢ ( 𝑛 = 𝑁 → ( ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 6 | fveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑍 ) = ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ) |
| 8 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 𝐻 𝑋 ) = ( 𝑌 𝐻 𝑋 ) ) | |
| 9 | 6 | opeq1d | ⊢ ( 𝑦 = 𝑌 → 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 = 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 ) |
| 10 | 9 | oveq1d | ⊢ ( 𝑦 = 𝑌 → ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) = ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ) |
| 11 | eqidd | ⊢ ( 𝑦 = 𝑌 → 𝑀 = 𝑀 ) | |
| 12 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 𝐺 𝑋 ) = ( 𝑌 𝐺 𝑋 ) ) | |
| 13 | 12 | fveq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) |
| 14 | 10 11 13 | oveq123d | ⊢ ( 𝑦 = 𝑌 → ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 16 | 8 15 | reueqbidv | ⊢ ( 𝑦 = 𝑌 → ( ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 17 | 7 16 | raleqbidv | ⊢ ( 𝑦 = 𝑌 → ( ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) ) |
| 18 | 17 1 2 | rspcdva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑍 ) ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑛 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 19 | 5 18 3 | rspcdva | ⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) | |
| 21 | 20 | oveq2d | ⊢ ( 𝑘 = 𝑚 → ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ) |
| 22 | 21 | eqeq2d | ⊢ ( 𝑘 = 𝑚 → ( 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 23 | 22 | cbvreuvw | ⊢ ( ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑚 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ) |
| 24 | fveq2 | ⊢ ( 𝑚 = 𝑙 → ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) = ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑚 = 𝑙 → ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |
| 26 | 25 | eqeq2d | ⊢ ( 𝑚 = 𝑙 → ( 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ↔ 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) ) |
| 27 | 26 | cbvreuvw | ⊢ ( ∃! 𝑚 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑚 ) ) ↔ ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |
| 28 | 23 27 | bitri | ⊢ ( ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ↔ ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |
| 29 | 19 28 | sylib | ⊢ ( 𝜑 → ∃! 𝑙 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 𝑍 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑙 ) ) ) |