This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal property for the universal pair <. X , M >. from a functor to an object, expressed explicitly. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcup3.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| oppcup3.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| oppcup3.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| oppcup3.xb | ⊢ ∙ = ( comp ‘ 𝐸 ) | ||
| oppcup3.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | ||
| oppcup3.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | ||
| oppcup3.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝑇 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | ||
| oppcup3.g | ⊢ ( 𝜑 → tpos 𝑇 = 𝐺 ) | ||
| oppcup3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| oppcup3.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) ) | ||
| Assertion | oppcup3 | ⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcup3.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | oppcup3.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 3 | oppcup3.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 4 | oppcup3.xb | ⊢ ∙ = ( comp ‘ 𝐸 ) | |
| 5 | oppcup3.o | ⊢ 𝑂 = ( oppCat ‘ 𝐷 ) | |
| 6 | oppcup3.p | ⊢ 𝑃 = ( oppCat ‘ 𝐸 ) | |
| 7 | oppcup3.x | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝑇 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) | |
| 8 | oppcup3.g | ⊢ ( 𝜑 → tpos 𝑇 = 𝐺 ) | |
| 9 | oppcup3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 10 | oppcup3.n | ⊢ ( 𝜑 → 𝑁 ∈ ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) ) | |
| 11 | 9 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐷 ) ) |
| 12 | 11 | elfvexd | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 13 | 10 | ne0d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) ≠ ∅ ) |
| 14 | fvprc | ⊢ ( ¬ 𝐸 ∈ V → ( Hom ‘ 𝐸 ) = ∅ ) | |
| 15 | 3 14 | eqtrid | ⊢ ( ¬ 𝐸 ∈ V → 𝐽 = ∅ ) |
| 16 | 15 | oveqd | ⊢ ( ¬ 𝐸 ∈ V → ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) = ( ( 𝐹 ‘ 𝑌 ) ∅ 𝑊 ) ) |
| 17 | 0ov | ⊢ ( ( 𝐹 ‘ 𝑌 ) ∅ 𝑊 ) = ∅ | |
| 18 | 16 17 | eqtrdi | ⊢ ( ¬ 𝐸 ∈ V → ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) = ∅ ) |
| 19 | 18 | necon1ai | ⊢ ( ( ( 𝐹 ‘ 𝑌 ) 𝐽 𝑊 ) ≠ ∅ → 𝐸 ∈ V ) |
| 20 | 13 19 | syl | ⊢ ( 𝜑 → 𝐸 ∈ V ) |
| 21 | 7 6 5 12 20 8 | oppcuprcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 22 | 7 8 | uptpos | ⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , tpos 𝐺 〉 ( 𝑂 UP 𝑃 ) 𝑊 ) 𝑀 ) |
| 23 | 1 2 3 4 5 6 21 22 | oppcup2 | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( ( 𝐹 ‘ 𝑦 ) 𝐽 𝑊 ) ∃! 𝑘 ∈ ( 𝑦 𝐻 𝑋 ) 𝑔 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑦 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |
| 24 | 23 9 10 | oppcup3lem | ⊢ ( 𝜑 → ∃! 𝑘 ∈ ( 𝑌 𝐻 𝑋 ) 𝑁 = ( 𝑀 ( 〈 ( 𝐹 ‘ 𝑌 ) , ( 𝐹 ‘ 𝑋 ) 〉 ∙ 𝑊 ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑘 ) ) ) |