This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
oppcthinendc
Metamath Proof Explorer
Description: The opposite category of a thin category whose morphisms are all
endomorphisms has the same base, hom-sets ( oppcendc ) and composition
operation as the original category. (Contributed by Zhi Wang , 16-Oct-2025)
Ref
Expression
Hypotheses
oppcthinco.o
⊢ O = oppCat ⁡ C
oppcthinco.c
⊢ φ → C ∈ ThinCat
oppcthinendc.b
⊢ B = Base C
oppcthinendc.h
⊢ H = Hom ⁡ C
oppcthinendc.1
⊢ φ ∧ x ∈ B ∧ y ∈ B → x ≠ y → x H y = ∅
Assertion
oppcthinendc
⊢ φ → comp 𝑓 ⁡ C = comp 𝑓 ⁡ O
Proof
Step
Hyp
Ref
Expression
1
oppcthinco.o
⊢ O = oppCat ⁡ C
2
oppcthinco.c
⊢ φ → C ∈ ThinCat
3
oppcthinendc.b
⊢ B = Base C
4
oppcthinendc.h
⊢ H = Hom ⁡ C
5
oppcthinendc.1
⊢ φ ∧ x ∈ B ∧ y ∈ B → x ≠ y → x H y = ∅
6
1 3 4 5
oppcendc
⊢ φ → Hom 𝑓 ⁡ C = Hom 𝑓 ⁡ O
7
1 2 6
oppcthinco
⊢ φ → comp 𝑓 ⁡ C = comp 𝑓 ⁡ O