This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Opposite category
oppcmndc
Metamath Proof Explorer
Description: The opposite category of a category whose base set is a singleton or an
empty set has the same base and hom-sets as the original category.
(Contributed by Zhi Wang , 16-Oct-2025)
Ref
Expression
Hypotheses
oppcendc.o
⊢ O = oppCat ⁡ C
oppcendc.b
⊢ B = Base C
oppcmndc.x
⊢ φ → B = X
Assertion
oppcmndc
⊢ φ → Hom 𝑓 ⁡ C = Hom 𝑓 ⁡ O
Proof
Step
Hyp
Ref
Expression
1
oppcendc.o
⊢ O = oppCat ⁡ C
2
oppcendc.b
⊢ B = Base C
3
oppcmndc.x
⊢ φ → B = X
4
eqid
⊢ Hom ⁡ C = Hom ⁡ C
5
3
oppcmndclem
⊢ φ ∧ x ∈ B ∧ y ∈ B → x ≠ y → x Hom ⁡ C y = ∅
6
1 2 4 5
oppcendc
⊢ φ → Hom 𝑓 ⁡ C = Hom 𝑓 ⁡ O