This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppccicb.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| Assertion | oppccicb | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccicb.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | id | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) | |
| 3 | 1 2 | oppccic | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |
| 4 | eqid | ⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) | |
| 5 | id | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) | |
| 6 | 4 5 | oppccic | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) 𝑆 ) |
| 7 | 1 | 2oppchomf | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
| 8 | 7 | a1i | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 9 | 1 | 2oppccomf | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 11 | 8 10 | cicpropd | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( ≃𝑐 ‘ 𝐶 ) = ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) ) |
| 12 | 11 | breqd | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑅 ( ≃𝑐 ‘ ( oppCat ‘ 𝑂 ) ) 𝑆 ) ) |
| 13 | 6 12 | mpbird | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) |
| 14 | 3 13 | impbii | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |