This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 27-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppccicb.o | |- O = ( oppCat ` C ) |
|
| Assertion | oppccicb | |- ( R ( ~=c ` C ) S <-> R ( ~=c ` O ) S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccicb.o | |- O = ( oppCat ` C ) |
|
| 2 | id | |- ( R ( ~=c ` C ) S -> R ( ~=c ` C ) S ) |
|
| 3 | 1 2 | oppccic | |- ( R ( ~=c ` C ) S -> R ( ~=c ` O ) S ) |
| 4 | eqid | |- ( oppCat ` O ) = ( oppCat ` O ) |
|
| 5 | id | |- ( R ( ~=c ` O ) S -> R ( ~=c ` O ) S ) |
|
| 6 | 4 5 | oppccic | |- ( R ( ~=c ` O ) S -> R ( ~=c ` ( oppCat ` O ) ) S ) |
| 7 | 1 | 2oppchomf | |- ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) |
| 8 | 7 | a1i | |- ( R ( ~=c ` O ) S -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) ) |
| 9 | 1 | 2oppccomf | |- ( comf ` C ) = ( comf ` ( oppCat ` O ) ) |
| 10 | 9 | a1i | |- ( R ( ~=c ` O ) S -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) ) |
| 11 | 8 10 | cicpropd | |- ( R ( ~=c ` O ) S -> ( ~=c ` C ) = ( ~=c ` ( oppCat ` O ) ) ) |
| 12 | 11 | breqd | |- ( R ( ~=c ` O ) S -> ( R ( ~=c ` C ) S <-> R ( ~=c ` ( oppCat ` O ) ) S ) ) |
| 13 | 6 12 | mpbird | |- ( R ( ~=c ` O ) S -> R ( ~=c ` C ) S ) |
| 14 | 3 13 | impbii | |- ( R ( ~=c ` C ) S <-> R ( ~=c ` O ) S ) |