This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | op01dm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| op01dm.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| op01dm.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | op01dm | ⊢ ( 𝐾 ∈ OP → ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op01dm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | op01dm.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | op01dm.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 8 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | isopos | ⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → ( ( oc ‘ 𝐾 ) ‘ 𝑦 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑥 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 0. ‘ 𝐾 ) ) ) ) |
| 11 | simpl | ⊢ ( ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → ( ( oc ‘ 𝐾 ) ‘ 𝑦 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑥 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 0. ‘ 𝐾 ) ) ) → ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) | |
| 12 | 11 | 3adantl1 | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → ( ( oc ‘ 𝐾 ) ‘ 𝑦 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑥 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 0. ‘ 𝐾 ) ) ) → ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) |
| 13 | 10 12 | sylbi | ⊢ ( 𝐾 ∈ OP → ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) |