This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| opncldf.2 | ⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) | ||
| Assertion | opncldf3 | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ◡ 𝐹 ‘ 𝐵 ) = ( 𝑋 ∖ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | opncldf.2 | ⊢ 𝐹 = ( 𝑢 ∈ 𝐽 ↦ ( 𝑋 ∖ 𝑢 ) ) | |
| 3 | cldrcl | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 4 | 1 2 | opncldf1 | ⊢ ( 𝐽 ∈ Top → ( 𝐹 : 𝐽 –1-1-onto→ ( Clsd ‘ 𝐽 ) ∧ ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) ) |
| 5 | 4 | simprd | ⊢ ( 𝐽 ∈ Top → ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ◡ 𝐹 = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ) |
| 7 | 6 | fveq1d | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ◡ 𝐹 ‘ 𝐵 ) = ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ‘ 𝐵 ) ) |
| 8 | 1 | cldopn | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) |
| 9 | difeq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝐵 ) ) | |
| 10 | eqid | ⊢ ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) = ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) | |
| 11 | 9 10 | fvmptg | ⊢ ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑋 ∖ 𝐵 ) ∈ 𝐽 ) → ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ‘ 𝐵 ) = ( 𝑋 ∖ 𝐵 ) ) |
| 12 | 8 11 | mpdan | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ( 𝑥 ∈ ( Clsd ‘ 𝐽 ) ↦ ( 𝑋 ∖ 𝑥 ) ) ‘ 𝐵 ) = ( 𝑋 ∖ 𝐵 ) ) |
| 13 | 7 12 | eqtrd | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( ◡ 𝐹 ‘ 𝐵 ) = ( 𝑋 ∖ 𝐵 ) ) |