This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opncldf.1 | |- X = U. J |
|
| opncldf.2 | |- F = ( u e. J |-> ( X \ u ) ) |
||
| Assertion | opncldf3 | |- ( B e. ( Clsd ` J ) -> ( `' F ` B ) = ( X \ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opncldf.1 | |- X = U. J |
|
| 2 | opncldf.2 | |- F = ( u e. J |-> ( X \ u ) ) |
|
| 3 | cldrcl | |- ( B e. ( Clsd ` J ) -> J e. Top ) |
|
| 4 | 1 2 | opncldf1 | |- ( J e. Top -> ( F : J -1-1-onto-> ( Clsd ` J ) /\ `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) ) |
| 5 | 4 | simprd | |- ( J e. Top -> `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) |
| 6 | 3 5 | syl | |- ( B e. ( Clsd ` J ) -> `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) |
| 7 | 6 | fveq1d | |- ( B e. ( Clsd ` J ) -> ( `' F ` B ) = ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) ) |
| 8 | 1 | cldopn | |- ( B e. ( Clsd ` J ) -> ( X \ B ) e. J ) |
| 9 | difeq2 | |- ( x = B -> ( X \ x ) = ( X \ B ) ) |
|
| 10 | eqid | |- ( x e. ( Clsd ` J ) |-> ( X \ x ) ) = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) |
|
| 11 | 9 10 | fvmptg | |- ( ( B e. ( Clsd ` J ) /\ ( X \ B ) e. J ) -> ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) = ( X \ B ) ) |
| 12 | 8 11 | mpdan | |- ( B e. ( Clsd ` J ) -> ( ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ` B ) = ( X \ B ) ) |
| 13 | 7 12 | eqtrd | |- ( B e. ( Clsd ` J ) -> ( `' F ` B ) = ( X \ B ) ) |