This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009) (Proof shortened by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opncldf.1 | |- X = U. J |
|
| opncldf.2 | |- F = ( u e. J |-> ( X \ u ) ) |
||
| Assertion | opncldf1 | |- ( J e. Top -> ( F : J -1-1-onto-> ( Clsd ` J ) /\ `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opncldf.1 | |- X = U. J |
|
| 2 | opncldf.2 | |- F = ( u e. J |-> ( X \ u ) ) |
|
| 3 | 1 | opncld | |- ( ( J e. Top /\ u e. J ) -> ( X \ u ) e. ( Clsd ` J ) ) |
| 4 | 1 | cldopn | |- ( x e. ( Clsd ` J ) -> ( X \ x ) e. J ) |
| 5 | 4 | adantl | |- ( ( J e. Top /\ x e. ( Clsd ` J ) ) -> ( X \ x ) e. J ) |
| 6 | 1 | cldss | |- ( x e. ( Clsd ` J ) -> x C_ X ) |
| 7 | 6 | ad2antll | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> x C_ X ) |
| 8 | dfss4 | |- ( x C_ X <-> ( X \ ( X \ x ) ) = x ) |
|
| 9 | 7 8 | sylib | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( X \ ( X \ x ) ) = x ) |
| 10 | 9 | eqcomd | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> x = ( X \ ( X \ x ) ) ) |
| 11 | difeq2 | |- ( u = ( X \ x ) -> ( X \ u ) = ( X \ ( X \ x ) ) ) |
|
| 12 | 11 | eqeq2d | |- ( u = ( X \ x ) -> ( x = ( X \ u ) <-> x = ( X \ ( X \ x ) ) ) ) |
| 13 | 10 12 | syl5ibrcom | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( u = ( X \ x ) -> x = ( X \ u ) ) ) |
| 14 | 1 | eltopss | |- ( ( J e. Top /\ u e. J ) -> u C_ X ) |
| 15 | 14 | adantrr | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> u C_ X ) |
| 16 | dfss4 | |- ( u C_ X <-> ( X \ ( X \ u ) ) = u ) |
|
| 17 | 15 16 | sylib | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( X \ ( X \ u ) ) = u ) |
| 18 | 17 | eqcomd | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> u = ( X \ ( X \ u ) ) ) |
| 19 | difeq2 | |- ( x = ( X \ u ) -> ( X \ x ) = ( X \ ( X \ u ) ) ) |
|
| 20 | 19 | eqeq2d | |- ( x = ( X \ u ) -> ( u = ( X \ x ) <-> u = ( X \ ( X \ u ) ) ) ) |
| 21 | 18 20 | syl5ibrcom | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( x = ( X \ u ) -> u = ( X \ x ) ) ) |
| 22 | 13 21 | impbid | |- ( ( J e. Top /\ ( u e. J /\ x e. ( Clsd ` J ) ) ) -> ( u = ( X \ x ) <-> x = ( X \ u ) ) ) |
| 23 | 2 3 5 22 | f1ocnv2d | |- ( J e. Top -> ( F : J -1-1-onto-> ( Clsd ` J ) /\ `' F = ( x e. ( Clsd ` J ) |-> ( X \ x ) ) ) ) |