This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 . (Contributed by AV, 26-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabssxpd.x | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝐴 ) | |
| opabssxpd.y | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ 𝐵 ) | ||
| Assertion | opabssxpd | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ⊆ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabssxpd.x | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝐴 ) | |
| 2 | opabssxpd.y | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑦 ∈ 𝐵 ) | |
| 3 | df-opab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) } | |
| 4 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) → 𝑧 = 〈 𝑥 , 𝑦 〉 ) | |
| 5 | 1 2 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 6 | 5 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 7 | 4 6 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) → 𝑧 ∈ ( 𝐴 × 𝐵 ) ) |
| 8 | 7 | ex | ⊢ ( 𝜑 → ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) → 𝑧 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 9 | 8 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) → 𝑧 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 10 | 9 | abssdv | ⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) } ⊆ ( 𝐴 × 𝐵 ) ) |
| 11 | 3 10 | eqsstrid | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ⊆ ( 𝐴 × 𝐵 ) ) |