This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered-pair class abstraction is a subset of a Cartesian product. Formerly part of proof for opabex2 . (Contributed by AV, 26-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabssxpd.x | |- ( ( ph /\ ps ) -> x e. A ) |
|
| opabssxpd.y | |- ( ( ph /\ ps ) -> y e. B ) |
||
| Assertion | opabssxpd | |- ( ph -> { <. x , y >. | ps } C_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabssxpd.x | |- ( ( ph /\ ps ) -> x e. A ) |
|
| 2 | opabssxpd.y | |- ( ( ph /\ ps ) -> y e. B ) |
|
| 3 | df-opab | |- { <. x , y >. | ps } = { z | E. x E. y ( z = <. x , y >. /\ ps ) } |
|
| 4 | simprl | |- ( ( ph /\ ( z = <. x , y >. /\ ps ) ) -> z = <. x , y >. ) |
|
| 5 | 1 2 | opelxpd | |- ( ( ph /\ ps ) -> <. x , y >. e. ( A X. B ) ) |
| 6 | 5 | adantrl | |- ( ( ph /\ ( z = <. x , y >. /\ ps ) ) -> <. x , y >. e. ( A X. B ) ) |
| 7 | 4 6 | eqeltrd | |- ( ( ph /\ ( z = <. x , y >. /\ ps ) ) -> z e. ( A X. B ) ) |
| 8 | 7 | ex | |- ( ph -> ( ( z = <. x , y >. /\ ps ) -> z e. ( A X. B ) ) ) |
| 9 | 8 | exlimdvv | |- ( ph -> ( E. x E. y ( z = <. x , y >. /\ ps ) -> z e. ( A X. B ) ) ) |
| 10 | 9 | abssdv | |- ( ph -> { z | E. x E. y ( z = <. x , y >. /\ ps ) } C_ ( A X. B ) ) |
| 11 | 3 10 | eqsstrid | |- ( ph -> { <. x , y >. | ps } C_ ( A X. B ) ) |