This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opabn1stprc | ⊢ ( ∃ 𝑦 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∉ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | biantrur | ⊢ ( 𝜑 ↔ ( 𝑥 ∈ V ∧ 𝜑 ) ) |
| 3 | 2 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) } |
| 4 | 3 | dmeqi | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) } |
| 5 | id | ⊢ ( ∃ 𝑦 𝜑 → ∃ 𝑦 𝜑 ) | |
| 6 | 5 | ralrimivw | ⊢ ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∈ V ∃ 𝑦 𝜑 ) |
| 7 | dmopab3 | ⊢ ( ∀ 𝑥 ∈ V ∃ 𝑦 𝜑 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) } = V ) | |
| 8 | 6 7 | sylib | ⊢ ( ∃ 𝑦 𝜑 → dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ V ∧ 𝜑 ) } = V ) |
| 9 | 4 8 | eqtrid | ⊢ ( ∃ 𝑦 𝜑 → dom { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = V ) |
| 10 | vprc | ⊢ ¬ V ∈ V | |
| 11 | 10 | a1i | ⊢ ( ∃ 𝑦 𝜑 → ¬ V ∈ V ) |
| 12 | 9 11 | eqneltrd | ⊢ ( ∃ 𝑦 𝜑 → ¬ dom { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ V ) |
| 13 | dmexg | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ V → dom { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ V ) | |
| 14 | 12 13 | nsyl | ⊢ ( ∃ 𝑦 𝜑 → ¬ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ V ) |
| 15 | df-nel | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∉ V ↔ ¬ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∈ V ) | |
| 16 | 14 15 | sylibr | ⊢ ( ∃ 𝑦 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ∉ V ) |