This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opabn1stprc | |- ( E. y ph -> { <. x , y >. | ph } e/ _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | biantrur | |- ( ph <-> ( x e. _V /\ ph ) ) |
| 3 | 2 | opabbii | |- { <. x , y >. | ph } = { <. x , y >. | ( x e. _V /\ ph ) } |
| 4 | 3 | dmeqi | |- dom { <. x , y >. | ph } = dom { <. x , y >. | ( x e. _V /\ ph ) } |
| 5 | id | |- ( E. y ph -> E. y ph ) |
|
| 6 | 5 | ralrimivw | |- ( E. y ph -> A. x e. _V E. y ph ) |
| 7 | dmopab3 | |- ( A. x e. _V E. y ph <-> dom { <. x , y >. | ( x e. _V /\ ph ) } = _V ) |
|
| 8 | 6 7 | sylib | |- ( E. y ph -> dom { <. x , y >. | ( x e. _V /\ ph ) } = _V ) |
| 9 | 4 8 | eqtrid | |- ( E. y ph -> dom { <. x , y >. | ph } = _V ) |
| 10 | vprc | |- -. _V e. _V |
|
| 11 | 10 | a1i | |- ( E. y ph -> -. _V e. _V ) |
| 12 | 9 11 | eqneltrd | |- ( E. y ph -> -. dom { <. x , y >. | ph } e. _V ) |
| 13 | dmexg | |- ( { <. x , y >. | ph } e. _V -> dom { <. x , y >. | ph } e. _V ) |
|
| 14 | 12 13 | nsyl | |- ( E. y ph -> -. { <. x , y >. | ph } e. _V ) |
| 15 | df-nel | |- ( { <. x , y >. | ph } e/ _V <-> -. { <. x , y >. | ph } e. _V ) |
|
| 16 | 14 15 | sylibr | |- ( E. y ph -> { <. x , y >. | ph } e/ _V ) |