This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two ordinals is in a third iff both of the first two are. (Contributed by Scott Fenton, 10-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onunel | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A u. B ) e. C <-> ( A e. C /\ B e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 | |- ( A C_ B <-> ( A u. B ) = B ) |
|
| 2 | 1 | biimpi | |- ( A C_ B -> ( A u. B ) = B ) |
| 3 | 2 | eleq1d | |- ( A C_ B -> ( ( A u. B ) e. C <-> B e. C ) ) |
| 4 | 3 | adantl | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( ( A u. B ) e. C <-> B e. C ) ) |
| 5 | ontr2 | |- ( ( A e. On /\ C e. On ) -> ( ( A C_ B /\ B e. C ) -> A e. C ) ) |
|
| 6 | 5 | 3adant2 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A C_ B /\ B e. C ) -> A e. C ) ) |
| 7 | 6 | expdimp | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( B e. C -> A e. C ) ) |
| 8 | 7 | pm4.71rd | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( B e. C <-> ( A e. C /\ B e. C ) ) ) |
| 9 | 4 8 | bitrd | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A C_ B ) -> ( ( A u. B ) e. C <-> ( A e. C /\ B e. C ) ) ) |
| 10 | ssequn2 | |- ( B C_ A <-> ( A u. B ) = A ) |
|
| 11 | 10 | biimpi | |- ( B C_ A -> ( A u. B ) = A ) |
| 12 | 11 | eleq1d | |- ( B C_ A -> ( ( A u. B ) e. C <-> A e. C ) ) |
| 13 | 12 | adantl | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( ( A u. B ) e. C <-> A e. C ) ) |
| 14 | ontr2 | |- ( ( B e. On /\ C e. On ) -> ( ( B C_ A /\ A e. C ) -> B e. C ) ) |
|
| 15 | 14 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( B C_ A /\ A e. C ) -> B e. C ) ) |
| 16 | 15 | expdimp | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( A e. C -> B e. C ) ) |
| 17 | 16 | pm4.71d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( A e. C <-> ( A e. C /\ B e. C ) ) ) |
| 18 | 13 17 | bitrd | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ B C_ A ) -> ( ( A u. B ) e. C <-> ( A e. C /\ B e. C ) ) ) |
| 19 | eloni | |- ( A e. On -> Ord A ) |
|
| 20 | eloni | |- ( B e. On -> Ord B ) |
|
| 21 | ordtri2or2 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) ) |
|
| 22 | 19 20 21 | syl2an | |- ( ( A e. On /\ B e. On ) -> ( A C_ B \/ B C_ A ) ) |
| 23 | 22 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B \/ B C_ A ) ) |
| 24 | 9 18 23 | mpjaodan | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A u. B ) e. C <-> ( A e. C /\ B e. C ) ) ) |