This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsucmin | |- ( A e. On -> suc A = |^| { x e. On | A e. x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( x e. On -> Ord x ) |
|
| 2 | ordelsuc | |- ( ( A e. On /\ Ord x ) -> ( A e. x <-> suc A C_ x ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. On /\ x e. On ) -> ( A e. x <-> suc A C_ x ) ) |
| 4 | 3 | rabbidva | |- ( A e. On -> { x e. On | A e. x } = { x e. On | suc A C_ x } ) |
| 5 | 4 | inteqd | |- ( A e. On -> |^| { x e. On | A e. x } = |^| { x e. On | suc A C_ x } ) |
| 6 | onsucb | |- ( A e. On <-> suc A e. On ) |
|
| 7 | intmin | |- ( suc A e. On -> |^| { x e. On | suc A C_ x } = suc A ) |
|
| 8 | 6 7 | sylbi | |- ( A e. On -> |^| { x e. On | suc A C_ x } = suc A ) |
| 9 | 5 8 | eqtr2d | |- ( A e. On -> suc A = |^| { x e. On | A e. x } ) |