This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndadd.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| omndadd.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | ||
| omndadd.2 | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | omndaddr | ⊢ ( ( ( oppg ‘ 𝑀 ) ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑍 + 𝑋 ) ≤ ( 𝑍 + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd.0 | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | omndadd.1 | ⊢ ≤ = ( le ‘ 𝑀 ) | |
| 3 | omndadd.2 | ⊢ + = ( +g ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( oppg ‘ 𝑀 ) = ( oppg ‘ 𝑀 ) | |
| 5 | 4 1 | oppgbas | ⊢ 𝐵 = ( Base ‘ ( oppg ‘ 𝑀 ) ) |
| 6 | 4 2 | oppgle | ⊢ ≤ = ( le ‘ ( oppg ‘ 𝑀 ) ) |
| 7 | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝑀 ) ) = ( +g ‘ ( oppg ‘ 𝑀 ) ) | |
| 8 | 5 6 7 | omndadd | ⊢ ( ( ( oppg ‘ 𝑀 ) ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) ≤ ( 𝑌 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) ) |
| 9 | 3 4 7 | oppgplus | ⊢ ( 𝑋 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) = ( 𝑍 + 𝑋 ) |
| 10 | 3 4 7 | oppgplus | ⊢ ( 𝑌 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) = ( 𝑍 + 𝑌 ) |
| 11 | 8 9 10 | 3brtr3g | ⊢ ( ( ( oppg ‘ 𝑀 ) ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑍 + 𝑋 ) ≤ ( 𝑍 + 𝑌 ) ) |