This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndadd.0 | |- B = ( Base ` M ) |
|
| omndadd.1 | |- .<_ = ( le ` M ) |
||
| omndadd.2 | |- .+ = ( +g ` M ) |
||
| Assertion | omndaddr | |- ( ( ( oppG ` M ) e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( Z .+ X ) .<_ ( Z .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd.0 | |- B = ( Base ` M ) |
|
| 2 | omndadd.1 | |- .<_ = ( le ` M ) |
|
| 3 | omndadd.2 | |- .+ = ( +g ` M ) |
|
| 4 | eqid | |- ( oppG ` M ) = ( oppG ` M ) |
|
| 5 | 4 1 | oppgbas | |- B = ( Base ` ( oppG ` M ) ) |
| 6 | 4 2 | oppgle | |- .<_ = ( le ` ( oppG ` M ) ) |
| 7 | eqid | |- ( +g ` ( oppG ` M ) ) = ( +g ` ( oppG ` M ) ) |
|
| 8 | 5 6 7 | omndadd | |- ( ( ( oppG ` M ) e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X ( +g ` ( oppG ` M ) ) Z ) .<_ ( Y ( +g ` ( oppG ` M ) ) Z ) ) |
| 9 | 3 4 7 | oppgplus | |- ( X ( +g ` ( oppG ` M ) ) Z ) = ( Z .+ X ) |
| 10 | 3 4 7 | oppgplus | |- ( Y ( +g ` ( oppG ` M ) ) Z ) = ( Z .+ Y ) |
| 11 | 8 9 10 | 3brtr3g | |- ( ( ( oppG ` M ) e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( Z .+ X ) .<_ ( Z .+ Y ) ) |