This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isoml.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isoml.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| isoml.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| isoml.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| isoml.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | isoml | ⊢ ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoml.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isoml.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | isoml.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | isoml.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | isoml.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 10 | 9 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 11 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) | |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 13 | eqidd | ⊢ ( 𝑘 = 𝐾 → 𝑥 = 𝑥 ) | |
| 14 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ( meet ‘ 𝐾 ) ) | |
| 15 | 14 4 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ∧ ) |
| 16 | eqidd | ⊢ ( 𝑘 = 𝐾 → 𝑦 = 𝑦 ) | |
| 17 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ( oc ‘ 𝐾 ) ) | |
| 18 | 17 5 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ⊥ ) |
| 19 | 18 | fveq1d | ⊢ ( 𝑘 = 𝐾 → ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) = ( ⊥ ‘ 𝑥 ) ) |
| 20 | 15 16 19 | oveq123d | ⊢ ( 𝑘 = 𝐾 → ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) |
| 21 | 12 13 20 | oveq123d | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) |
| 22 | 21 | eqeq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ↔ 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) |
| 23 | 10 22 | imbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ↔ ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| 24 | 7 23 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| 25 | 7 24 | raleqbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |
| 26 | df-oml | ⊢ OML = { 𝑘 ∈ OL ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 → 𝑦 = ( 𝑥 ( join ‘ 𝑘 ) ( 𝑦 ( meet ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑥 ) ) ) ) } | |
| 27 | 25 26 | elrab2 | ⊢ ( 𝐾 ∈ OML ↔ ( 𝐾 ∈ OL ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 → 𝑦 = ( 𝑥 ∨ ( 𝑦 ∧ ( ⊥ ‘ 𝑥 ) ) ) ) ) ) |