This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal isomorphism, Hartogs's theorem
oion
Metamath Proof Explorer
Description: The order type of the well-order R on A is an ordinal.
(Contributed by Stefan O'Rear , 11-Feb-2015) (Revised by Mario
Carneiro , 23-May-2015)
Ref
Expression
Hypothesis
oicl.1
⊢ F = OrdIso R A
Assertion
oion
⊢ A ∈ V → dom ⁡ F ∈ On
Proof
Step
Hyp
Ref
Expression
1
oicl.1
⊢ F = OrdIso R A
2
1
oicl
⊢ Ord ⁡ dom ⁡ F
3
1
oiexg
⊢ A ∈ V → F ∈ V
4
dmexg
⊢ F ∈ V → dom ⁡ F ∈ V
5
elong
⊢ dom ⁡ F ∈ V → dom ⁡ F ∈ On ↔ Ord ⁡ dom ⁡ F
6
3 4 5
3syl
⊢ A ∈ V → dom ⁡ F ∈ On ↔ Ord ⁡ dom ⁡ F
7
2 6
mpbiri
⊢ A ∈ V → dom ⁡ F ∈ On