This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function analogue of subge0 . (Contributed by Mario Carneiro, 24-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofsubge0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ( 𝐴 × { 0 } ) ∘r ≤ ( 𝐹 ∘f − 𝐺 ) ↔ 𝐺 ∘r ≤ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 2 | 1 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 3 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐺 : 𝐴 ⟶ ℝ ) | |
| 4 | 3 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 5 | 2 4 | subge0d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 | 5 | ralbidva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 0 ≤ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 7 | 0cn | ⊢ 0 ∈ ℂ | |
| 8 | fnconstg | ⊢ ( 0 ∈ ℂ → ( 𝐴 × { 0 } ) Fn 𝐴 ) | |
| 9 | 7 8 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
| 10 | 1 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐹 Fn 𝐴 ) |
| 11 | 3 | ffnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐺 Fn 𝐴 ) |
| 12 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → 𝐴 ∈ 𝑉 ) | |
| 13 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 14 | 10 11 12 12 13 | offn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( 𝐹 ∘f − 𝐺 ) Fn 𝐴 ) |
| 15 | c0ex | ⊢ 0 ∈ V | |
| 16 | 15 | fvconst2 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 18 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | eqidd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 20 | 10 11 12 12 13 18 19 | ofval | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f − 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 21 | 9 14 12 12 13 17 20 | ofrfval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ( 𝐴 × { 0 } ) ∘r ≤ ( 𝐹 ∘f − 𝐺 ) ↔ ∀ 𝑥 ∈ 𝐴 0 ≤ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 22 | 11 10 12 12 13 19 18 | ofrfval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( 𝐺 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 | 6 21 22 | 3bitr4d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐺 : 𝐴 ⟶ ℝ ) → ( ( 𝐴 × { 0 } ) ∘r ≤ ( 𝐹 ∘f − 𝐺 ) ↔ 𝐺 ∘r ≤ 𝐹 ) ) |