This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 23-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval2f.0 | ⊢ Ⅎ 𝑥 𝜑 | |
| offval2f.a | ⊢ Ⅎ 𝑥 𝐴 | ||
| offval2f.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| offval2f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) | ||
| offval2f.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑋 ) | ||
| offval2f.4 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | ||
| offval2f.5 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | ||
| Assertion | offval2f | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2f.0 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | offval2f.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | offval2f.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | offval2f.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) | |
| 5 | offval2f.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑋 ) | |
| 6 | offval2f.4 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 7 | offval2f.5 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 8 | 4 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑊 ) ) |
| 9 | 1 8 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
| 10 | 2 | fnmptf | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 12 | 6 | fneq1d | ⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) |
| 13 | 11 12 | mpbird | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 14 | 5 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑋 ) ) |
| 15 | 1 14 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 ) |
| 16 | 2 | fnmptf | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 18 | 7 | fneq1d | ⊢ ( 𝜑 → ( 𝐺 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ) |
| 19 | 17 18 | mpbird | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 20 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 21 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 22 | 21 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 23 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 24 | 23 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
| 25 | 13 19 3 3 20 22 24 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) ) |
| 26 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 27 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 28 | nfcv | ⊢ Ⅎ 𝑥 𝑅 | |
| 29 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) | |
| 30 | 27 28 29 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
| 31 | nfcv | ⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) | |
| 32 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 33 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) | |
| 34 | 32 33 | oveq12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) = ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) |
| 35 | 26 2 30 31 34 | cbvmptf | ⊢ ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 37 | 2 | fvmpt2f | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 38 | 36 4 37 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 39 | 2 | fvmpt2f | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 40 | 36 5 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 41 | 38 40 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) = ( 𝐵 𝑅 𝐶 ) ) |
| 42 | 1 41 | mpteq2da | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
| 43 | 35 42 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
| 44 | 25 43 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |