This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 23-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval2f.0 | |- F/ x ph |
|
| offval2f.a | |- F/_ x A |
||
| offval2f.1 | |- ( ph -> A e. V ) |
||
| offval2f.2 | |- ( ( ph /\ x e. A ) -> B e. W ) |
||
| offval2f.3 | |- ( ( ph /\ x e. A ) -> C e. X ) |
||
| offval2f.4 | |- ( ph -> F = ( x e. A |-> B ) ) |
||
| offval2f.5 | |- ( ph -> G = ( x e. A |-> C ) ) |
||
| Assertion | offval2f | |- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2f.0 | |- F/ x ph |
|
| 2 | offval2f.a | |- F/_ x A |
|
| 3 | offval2f.1 | |- ( ph -> A e. V ) |
|
| 4 | offval2f.2 | |- ( ( ph /\ x e. A ) -> B e. W ) |
|
| 5 | offval2f.3 | |- ( ( ph /\ x e. A ) -> C e. X ) |
|
| 6 | offval2f.4 | |- ( ph -> F = ( x e. A |-> B ) ) |
|
| 7 | offval2f.5 | |- ( ph -> G = ( x e. A |-> C ) ) |
|
| 8 | 4 | ex | |- ( ph -> ( x e. A -> B e. W ) ) |
| 9 | 1 8 | ralrimi | |- ( ph -> A. x e. A B e. W ) |
| 10 | 2 | fnmptf | |- ( A. x e. A B e. W -> ( x e. A |-> B ) Fn A ) |
| 11 | 9 10 | syl | |- ( ph -> ( x e. A |-> B ) Fn A ) |
| 12 | 6 | fneq1d | |- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
| 13 | 11 12 | mpbird | |- ( ph -> F Fn A ) |
| 14 | 5 | ex | |- ( ph -> ( x e. A -> C e. X ) ) |
| 15 | 1 14 | ralrimi | |- ( ph -> A. x e. A C e. X ) |
| 16 | 2 | fnmptf | |- ( A. x e. A C e. X -> ( x e. A |-> C ) Fn A ) |
| 17 | 15 16 | syl | |- ( ph -> ( x e. A |-> C ) Fn A ) |
| 18 | 7 | fneq1d | |- ( ph -> ( G Fn A <-> ( x e. A |-> C ) Fn A ) ) |
| 19 | 17 18 | mpbird | |- ( ph -> G Fn A ) |
| 20 | inidm | |- ( A i^i A ) = A |
|
| 21 | 6 | adantr | |- ( ( ph /\ y e. A ) -> F = ( x e. A |-> B ) ) |
| 22 | 21 | fveq1d | |- ( ( ph /\ y e. A ) -> ( F ` y ) = ( ( x e. A |-> B ) ` y ) ) |
| 23 | 7 | adantr | |- ( ( ph /\ y e. A ) -> G = ( x e. A |-> C ) ) |
| 24 | 23 | fveq1d | |- ( ( ph /\ y e. A ) -> ( G ` y ) = ( ( x e. A |-> C ) ` y ) ) |
| 25 | 13 19 3 3 20 22 24 | offval | |- ( ph -> ( F oF R G ) = ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) ) |
| 26 | nfcv | |- F/_ y A |
|
| 27 | nffvmpt1 | |- F/_ x ( ( x e. A |-> B ) ` y ) |
|
| 28 | nfcv | |- F/_ x R |
|
| 29 | nffvmpt1 | |- F/_ x ( ( x e. A |-> C ) ` y ) |
|
| 30 | 27 28 29 | nfov | |- F/_ x ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) |
| 31 | nfcv | |- F/_ y ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) |
|
| 32 | fveq2 | |- ( y = x -> ( ( x e. A |-> B ) ` y ) = ( ( x e. A |-> B ) ` x ) ) |
|
| 33 | fveq2 | |- ( y = x -> ( ( x e. A |-> C ) ` y ) = ( ( x e. A |-> C ) ` x ) ) |
|
| 34 | 32 33 | oveq12d | |- ( y = x -> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) = ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 35 | 26 2 30 31 34 | cbvmptf | |- ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) |
| 36 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 37 | 2 | fvmpt2f | |- ( ( x e. A /\ B e. W ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 38 | 36 4 37 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 39 | 2 | fvmpt2f | |- ( ( x e. A /\ C e. X ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 40 | 36 5 39 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> C ) ` x ) = C ) |
| 41 | 38 40 | oveq12d | |- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) = ( B R C ) ) |
| 42 | 1 41 | mpteq2da | |- ( ph -> ( x e. A |-> ( ( ( x e. A |-> B ) ` x ) R ( ( x e. A |-> C ) ` x ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 43 | 35 42 | eqtrid | |- ( ph -> ( y e. A |-> ( ( ( x e. A |-> B ) ` y ) R ( ( x e. A |-> C ) ` y ) ) ) = ( x e. A |-> ( B R C ) ) ) |
| 44 | 25 43 | eqtrd | |- ( ph -> ( F oF R G ) = ( x e. A |-> ( B R C ) ) ) |