This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofres.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| ofres.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | ||
| ofres.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ofres.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| ofres.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 | ||
| Assertion | ofres | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( ( 𝐹 ↾ 𝐶 ) ∘f 𝑅 ( 𝐺 ↾ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofres.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | ofres.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | |
| 3 | ofres.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | ofres.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 5 | ofres.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 | |
| 6 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 7 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 8 | 1 2 3 4 5 6 7 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 9 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 10 | 5 9 | eqsstrri | ⊢ 𝐶 ⊆ 𝐴 |
| 11 | fnssres | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ) | |
| 12 | 1 10 11 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ) |
| 13 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 14 | 5 13 | eqsstrri | ⊢ 𝐶 ⊆ 𝐵 |
| 15 | fnssres | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) | |
| 16 | 2 14 15 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
| 17 | ssexg | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐶 ∈ V ) | |
| 18 | 10 3 17 | sylancr | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 19 | inidm | ⊢ ( 𝐶 ∩ 𝐶 ) = 𝐶 | |
| 20 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 22 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐺 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 24 | 12 16 18 18 19 21 23 | offval | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) ∘f 𝑅 ( 𝐺 ↾ 𝐶 ) ) = ( 𝑥 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 25 | 8 24 | eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( ( 𝐹 ↾ 𝐶 ) ∘f 𝑅 ( 𝐺 ↾ 𝐶 ) ) ) |