This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odudlat.d | ⊢ 𝐷 = ( ODual ‘ 𝐾 ) | |
| Assertion | odudlatb | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ DLat ↔ 𝐷 ∈ DLat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odudlat.d | ⊢ 𝐷 = ( ODual ‘ 𝐾 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 5 | 2 3 4 | latdisd | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 6 | 5 | bicomd | ⊢ ( 𝐾 ∈ Lat → ( ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 7 | 6 | pm5.32i | ⊢ ( ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 8 | 1 | odulatb | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ Lat ↔ 𝐷 ∈ Lat ) ) |
| 9 | 8 | anbi1d | ⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝐷 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 10 | 7 9 | bitrid | ⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝐷 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 11 | 2 3 4 | isdlat | ⊢ ( 𝐾 ∈ DLat ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) ( 𝑦 ( join ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐾 ) 𝑦 ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 12 | 1 2 | odubas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐷 ) |
| 13 | 1 4 | odujoin | ⊢ ( meet ‘ 𝐾 ) = ( join ‘ 𝐷 ) |
| 14 | 1 3 | odumeet | ⊢ ( join ‘ 𝐾 ) = ( meet ‘ 𝐷 ) |
| 15 | 12 13 14 | isdlat | ⊢ ( 𝐷 ∈ DLat ↔ ( 𝐷 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) ( 𝑦 ( meet ‘ 𝐾 ) 𝑧 ) ) = ( ( 𝑥 ( join ‘ 𝐾 ) 𝑦 ) ( meet ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 16 | 10 11 15 | 3bitr4g | ⊢ ( 𝐾 ∈ 𝑉 → ( 𝐾 ∈ DLat ↔ 𝐷 ∈ DLat ) ) |