This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group element is annihilated by any multiple of its order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | oddvdsi | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( N .x. A ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | simp3 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( O ` A ) || N ) |
|
| 6 | dvdszrcl | |- ( ( O ` A ) || N -> ( ( O ` A ) e. ZZ /\ N e. ZZ ) ) |
|
| 7 | 6 | simprd | |- ( ( O ` A ) || N -> N e. ZZ ) |
| 8 | 1 2 3 4 | oddvds | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
| 9 | 7 8 | syl3an3 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
| 10 | 5 9 | mpbid | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) || N ) -> ( N .x. A ) = .0. ) |