This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Fan Zheng, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o1mul | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f · 𝐺 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑚 · 𝑛 ) ∈ ℝ ) | |
| 2 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 3 | simp2l | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑥 ∈ ℂ ) | |
| 4 | simp2r | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑦 ∈ ℂ ) | |
| 5 | 3 4 | absmuld | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
| 6 | 3 | abscld | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 7 | simp1l | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑚 ∈ ℝ ) | |
| 8 | 4 | abscld | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 9 | simp1r | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 𝑛 ∈ ℝ ) | |
| 10 | 3 | absge0d | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 0 ≤ ( abs ‘ 𝑥 ) ) |
| 11 | 4 | absge0d | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → 0 ≤ ( abs ‘ 𝑦 ) ) |
| 12 | simp3l | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑥 ) ≤ 𝑚 ) | |
| 13 | simp3r | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ 𝑦 ) ≤ 𝑛 ) | |
| 14 | 6 7 8 9 10 11 12 13 | lemul12ad | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ≤ ( 𝑚 · 𝑛 ) ) |
| 15 | 5 14 | eqbrtrd | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) ≤ ( 𝑚 · 𝑛 ) ) |
| 16 | 15 | 3expia | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) ≤ ( 𝑚 · 𝑛 ) ) ) |
| 17 | 1 2 16 | o1of2 | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f · 𝐺 ) ∈ 𝑂(1) ) |