This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector subtraction. (Contributed by NM, 27-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvpncan2.1 | |- X = ( BaseSet ` U ) |
|
| nvpncan2.2 | |- G = ( +v ` U ) |
||
| nvpncan2.3 | |- M = ( -v ` U ) |
||
| Assertion | nvpncan2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M A ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvpncan2.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvpncan2.2 | |- G = ( +v ` U ) |
|
| 3 | nvpncan2.3 | |- M = ( -v ` U ) |
|
| 4 | simp1 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) |
|
| 5 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 6 | simp2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 7 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 8 | 1 2 7 3 | nvmval | |- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ A e. X ) -> ( ( A G B ) M A ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) ) |
| 9 | 4 5 6 8 | syl3anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M A ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) ) |
| 10 | simp3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 11 | neg1cn | |- -u 1 e. CC |
|
| 12 | 1 7 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
| 13 | 11 12 | mp3an2 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
| 14 | 13 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
| 15 | 1 2 | nvadd32 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ ( -u 1 ( .sOLD ` U ) A ) e. X ) ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) ) |
| 16 | 4 6 10 14 15 | syl13anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) ) |
| 17 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 18 | 1 2 7 17 | nvrinv | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) |
| 19 | 18 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( -u 1 ( .sOLD ` U ) A ) ) = ( 0vec ` U ) ) |
| 20 | 19 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) = ( ( 0vec ` U ) G B ) ) |
| 21 | 1 2 17 | nv0lid | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) G B ) = B ) |
| 22 | 21 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( 0vec ` U ) G B ) = B ) |
| 23 | 20 22 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G ( -u 1 ( .sOLD ` U ) A ) ) G B ) = B ) |
| 24 | 16 23 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) A ) ) = B ) |
| 25 | 9 24 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M A ) = B ) |