This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for a normed complex vector space. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvpncan2.1 | |- X = ( BaseSet ` U ) |
|
| nvpncan2.2 | |- G = ( +v ` U ) |
||
| nvpncan2.3 | |- M = ( -v ` U ) |
||
| Assertion | nvnpcan | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) G B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvpncan2.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvpncan2.2 | |- G = ( +v ` U ) |
|
| 3 | nvpncan2.3 | |- M = ( -v ` U ) |
|
| 4 | simprl | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
|
| 5 | simprr | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 6 | 4 5 5 | 3jca | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A e. X /\ B e. X /\ B e. X ) ) |
| 7 | 1 2 3 | nvaddsub | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) |
| 8 | 6 7 | syldan | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) |
| 9 | 8 | 3impb | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = ( ( A M B ) G B ) ) |
| 10 | 1 2 3 | nvpncan | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A G B ) M B ) = A ) |
| 11 | 9 10 | eqtr3d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A M B ) G B ) = A ) |