This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Normed complex vector spaces
Definition and basic properties
nvmcl
Metamath Proof Explorer
Description: Closure law for the vector subtraction operation of a normed complex
vector space. (Contributed by NM , 11-Sep-2007)
(New usage is discouraged.)
Ref
Expression
Hypotheses
nvmf.1
⊢ X = BaseSet ⁡ U
nvmf.3
⊢ M = - v ⁡ U
Assertion
nvmcl
⊢ U ∈ NrmCVec ∧ A ∈ X ∧ B ∈ X → A M B ∈ X
Proof
Step
Hyp
Ref
Expression
1
nvmf.1
⊢ X = BaseSet ⁡ U
2
nvmf.3
⊢ M = - v ⁡ U
3
1 2
nvmf
⊢ U ∈ NrmCVec → M : X × X ⟶ X
4
fovcdm
⊢ M : X × X ⟶ X ∧ A ∈ X ∧ B ∈ X → A M B ∈ X
5
3 4
syl3an1
⊢ U ∈ NrmCVec ∧ A ∈ X ∧ B ∈ X → A M B ∈ X