This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numwdom | |- ( ( A e. dom card /\ B ~<_* A ) -> B e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brwdomi | |- ( B ~<_* A -> ( B = (/) \/ E. f f : A -onto-> B ) ) |
|
| 2 | simpr | |- ( ( A e. dom card /\ B = (/) ) -> B = (/) ) |
|
| 3 | 0fi | |- (/) e. Fin |
|
| 4 | finnum | |- ( (/) e. Fin -> (/) e. dom card ) |
|
| 5 | 3 4 | ax-mp | |- (/) e. dom card |
| 6 | 2 5 | eqeltrdi | |- ( ( A e. dom card /\ B = (/) ) -> B e. dom card ) |
| 7 | fonum | |- ( ( A e. dom card /\ f : A -onto-> B ) -> B e. dom card ) |
|
| 8 | 7 | ex | |- ( A e. dom card -> ( f : A -onto-> B -> B e. dom card ) ) |
| 9 | 8 | exlimdv | |- ( A e. dom card -> ( E. f f : A -onto-> B -> B e. dom card ) ) |
| 10 | 9 | imp | |- ( ( A e. dom card /\ E. f f : A -onto-> B ) -> B e. dom card ) |
| 11 | 6 10 | jaodan | |- ( ( A e. dom card /\ ( B = (/) \/ E. f f : A -onto-> B ) ) -> B e. dom card ) |
| 12 | 1 11 | sylan2 | |- ( ( A e. dom card /\ B ~<_* A ) -> B e. dom card ) |