This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 10-Feb-1997) (Proof shortened by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | numth.1 | ⊢ 𝐴 ∈ V | |
| Assertion | numth | ⊢ ∃ 𝑥 ∈ On ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numth.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | numth2 | ⊢ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 |
| 3 | bren | ⊢ ( 𝑥 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝐴 ) | |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ↔ ∃ 𝑥 ∈ On ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝐴 ) |
| 5 | 2 4 | mpbi | ⊢ ∃ 𝑥 ∈ On ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝐴 |