This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Numeration theorem: any set is equinumerous to some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 20-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | numth.1 | ⊢ 𝐴 ∈ V | |
| Assertion | numth2 | ⊢ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numth.1 | ⊢ 𝐴 ∈ V | |
| 2 | numth3 | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ dom card ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝐴 ∈ dom card |
| 4 | isnum2 | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 ) | |
| 5 | 3 4 | mpbi | ⊢ ∃ 𝑥 ∈ On 𝑥 ≈ 𝐴 |