This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two decimal integers M and N against a fixed multiplicand P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 | ||
| numma.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| numma.4 | ⊢ 𝐶 ∈ ℕ0 | ||
| numma.5 | ⊢ 𝐷 ∈ ℕ0 | ||
| numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | ||
| numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | ||
| nummac.8 | ⊢ 𝑃 ∈ ℕ0 | ||
| nummac.9 | ⊢ 𝐹 ∈ ℕ0 | ||
| nummac.10 | ⊢ 𝐺 ∈ ℕ0 | ||
| nummac.11 | ⊢ ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 | ||
| nummac.12 | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) | ||
| Assertion | nummac | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| 2 | numma.2 | ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numma.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | numma.4 | ⊢ 𝐶 ∈ ℕ0 | |
| 5 | numma.5 | ⊢ 𝐷 ∈ ℕ0 | |
| 6 | numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | |
| 7 | numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | |
| 8 | nummac.8 | ⊢ 𝑃 ∈ ℕ0 | |
| 9 | nummac.9 | ⊢ 𝐹 ∈ ℕ0 | |
| 10 | nummac.10 | ⊢ 𝐺 ∈ ℕ0 | |
| 11 | nummac.11 | ⊢ ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 | |
| 12 | nummac.12 | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) | |
| 13 | 1 | nn0cni | ⊢ 𝑇 ∈ ℂ |
| 14 | 2 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 15 | 8 | nn0cni | ⊢ 𝑃 ∈ ℂ |
| 16 | 14 15 | mulcli | ⊢ ( 𝐴 · 𝑃 ) ∈ ℂ |
| 17 | 4 | nn0cni | ⊢ 𝐶 ∈ ℂ |
| 18 | 10 | nn0cni | ⊢ 𝐺 ∈ ℂ |
| 19 | 16 17 18 | addassi | ⊢ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) = ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) |
| 20 | 19 11 | eqtri | ⊢ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) = 𝐸 |
| 21 | 16 17 | addcli | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) ∈ ℂ |
| 22 | 21 18 | addcli | ⊢ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) ∈ ℂ |
| 23 | 20 22 | eqeltrri | ⊢ 𝐸 ∈ ℂ |
| 24 | 13 23 18 | subdii | ⊢ ( 𝑇 · ( 𝐸 − 𝐺 ) ) = ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) |
| 25 | 24 | oveq1i | ⊢ ( ( 𝑇 · ( 𝐸 − 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) = ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
| 26 | 23 18 21 | subadd2i | ⊢ ( ( 𝐸 − 𝐺 ) = ( ( 𝐴 · 𝑃 ) + 𝐶 ) ↔ ( ( ( 𝐴 · 𝑃 ) + 𝐶 ) + 𝐺 ) = 𝐸 ) |
| 27 | 20 26 | mpbir | ⊢ ( 𝐸 − 𝐺 ) = ( ( 𝐴 · 𝑃 ) + 𝐶 ) |
| 28 | 27 | eqcomi | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) = ( 𝐸 − 𝐺 ) |
| 29 | 1 2 3 4 5 6 7 8 28 12 | numma | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · ( 𝐸 − 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
| 30 | 13 23 | mulcli | ⊢ ( 𝑇 · 𝐸 ) ∈ ℂ |
| 31 | 13 18 | mulcli | ⊢ ( 𝑇 · 𝐺 ) ∈ ℂ |
| 32 | npcan | ⊢ ( ( ( 𝑇 · 𝐸 ) ∈ ℂ ∧ ( 𝑇 · 𝐺 ) ∈ ℂ ) → ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) = ( 𝑇 · 𝐸 ) ) | |
| 33 | 30 31 32 | mp2an | ⊢ ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) = ( 𝑇 · 𝐸 ) |
| 34 | 33 | oveq1i | ⊢ ( ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) + 𝐹 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| 35 | 30 31 | subcli | ⊢ ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) ∈ ℂ |
| 36 | 9 | nn0cni | ⊢ 𝐹 ∈ ℂ |
| 37 | 35 31 36 | addassi | ⊢ ( ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( 𝑇 · 𝐺 ) ) + 𝐹 ) = ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
| 38 | 34 37 | eqtr3i | ⊢ ( ( 𝑇 · 𝐸 ) + 𝐹 ) = ( ( ( 𝑇 · 𝐸 ) − ( 𝑇 · 𝐺 ) ) + ( ( 𝑇 · 𝐺 ) + 𝐹 ) ) |
| 39 | 25 29 38 | 3eqtr4i | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |