This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two decimal integers M and N against a fixed multiplicand P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | |- T e. NN0 |
|
| numma.2 | |- A e. NN0 |
||
| numma.3 | |- B e. NN0 |
||
| numma.4 | |- C e. NN0 |
||
| numma.5 | |- D e. NN0 |
||
| numma.6 | |- M = ( ( T x. A ) + B ) |
||
| numma.7 | |- N = ( ( T x. C ) + D ) |
||
| nummac.8 | |- P e. NN0 |
||
| nummac.9 | |- F e. NN0 |
||
| nummac.10 | |- G e. NN0 |
||
| nummac.11 | |- ( ( A x. P ) + ( C + G ) ) = E |
||
| nummac.12 | |- ( ( B x. P ) + D ) = ( ( T x. G ) + F ) |
||
| Assertion | nummac | |- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | |- T e. NN0 |
|
| 2 | numma.2 | |- A e. NN0 |
|
| 3 | numma.3 | |- B e. NN0 |
|
| 4 | numma.4 | |- C e. NN0 |
|
| 5 | numma.5 | |- D e. NN0 |
|
| 6 | numma.6 | |- M = ( ( T x. A ) + B ) |
|
| 7 | numma.7 | |- N = ( ( T x. C ) + D ) |
|
| 8 | nummac.8 | |- P e. NN0 |
|
| 9 | nummac.9 | |- F e. NN0 |
|
| 10 | nummac.10 | |- G e. NN0 |
|
| 11 | nummac.11 | |- ( ( A x. P ) + ( C + G ) ) = E |
|
| 12 | nummac.12 | |- ( ( B x. P ) + D ) = ( ( T x. G ) + F ) |
|
| 13 | 1 | nn0cni | |- T e. CC |
| 14 | 2 | nn0cni | |- A e. CC |
| 15 | 8 | nn0cni | |- P e. CC |
| 16 | 14 15 | mulcli | |- ( A x. P ) e. CC |
| 17 | 4 | nn0cni | |- C e. CC |
| 18 | 10 | nn0cni | |- G e. CC |
| 19 | 16 17 18 | addassi | |- ( ( ( A x. P ) + C ) + G ) = ( ( A x. P ) + ( C + G ) ) |
| 20 | 19 11 | eqtri | |- ( ( ( A x. P ) + C ) + G ) = E |
| 21 | 16 17 | addcli | |- ( ( A x. P ) + C ) e. CC |
| 22 | 21 18 | addcli | |- ( ( ( A x. P ) + C ) + G ) e. CC |
| 23 | 20 22 | eqeltrri | |- E e. CC |
| 24 | 13 23 18 | subdii | |- ( T x. ( E - G ) ) = ( ( T x. E ) - ( T x. G ) ) |
| 25 | 24 | oveq1i | |- ( ( T x. ( E - G ) ) + ( ( T x. G ) + F ) ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
| 26 | 23 18 21 | subadd2i | |- ( ( E - G ) = ( ( A x. P ) + C ) <-> ( ( ( A x. P ) + C ) + G ) = E ) |
| 27 | 20 26 | mpbir | |- ( E - G ) = ( ( A x. P ) + C ) |
| 28 | 27 | eqcomi | |- ( ( A x. P ) + C ) = ( E - G ) |
| 29 | 1 2 3 4 5 6 7 8 28 12 | numma | |- ( ( M x. P ) + N ) = ( ( T x. ( E - G ) ) + ( ( T x. G ) + F ) ) |
| 30 | 13 23 | mulcli | |- ( T x. E ) e. CC |
| 31 | 13 18 | mulcli | |- ( T x. G ) e. CC |
| 32 | npcan | |- ( ( ( T x. E ) e. CC /\ ( T x. G ) e. CC ) -> ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) = ( T x. E ) ) |
|
| 33 | 30 31 32 | mp2an | |- ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) = ( T x. E ) |
| 34 | 33 | oveq1i | |- ( ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) + F ) = ( ( T x. E ) + F ) |
| 35 | 30 31 | subcli | |- ( ( T x. E ) - ( T x. G ) ) e. CC |
| 36 | 9 | nn0cni | |- F e. CC |
| 37 | 35 31 36 | addassi | |- ( ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) + F ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
| 38 | 34 37 | eqtr3i | |- ( ( T x. E ) + F ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
| 39 | 25 29 38 | 3eqtr4i | |- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |