This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two decimal integers M and N against a fixed multiplicand P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 | ||
| numma.3 | ⊢ 𝐵 ∈ ℕ0 | ||
| numma.4 | ⊢ 𝐶 ∈ ℕ0 | ||
| numma.5 | ⊢ 𝐷 ∈ ℕ0 | ||
| numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | ||
| numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | ||
| numma2c.8 | ⊢ 𝑃 ∈ ℕ0 | ||
| numma2c.9 | ⊢ 𝐹 ∈ ℕ0 | ||
| numma2c.10 | ⊢ 𝐺 ∈ ℕ0 | ||
| numma2c.11 | ⊢ ( ( 𝑃 · 𝐴 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 | ||
| numma2c.12 | ⊢ ( ( 𝑃 · 𝐵 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) | ||
| Assertion | numma2c | ⊢ ( ( 𝑃 · 𝑀 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | ⊢ 𝑇 ∈ ℕ0 | |
| 2 | numma.2 | ⊢ 𝐴 ∈ ℕ0 | |
| 3 | numma.3 | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | numma.4 | ⊢ 𝐶 ∈ ℕ0 | |
| 5 | numma.5 | ⊢ 𝐷 ∈ ℕ0 | |
| 6 | numma.6 | ⊢ 𝑀 = ( ( 𝑇 · 𝐴 ) + 𝐵 ) | |
| 7 | numma.7 | ⊢ 𝑁 = ( ( 𝑇 · 𝐶 ) + 𝐷 ) | |
| 8 | numma2c.8 | ⊢ 𝑃 ∈ ℕ0 | |
| 9 | numma2c.9 | ⊢ 𝐹 ∈ ℕ0 | |
| 10 | numma2c.10 | ⊢ 𝐺 ∈ ℕ0 | |
| 11 | numma2c.11 | ⊢ ( ( 𝑃 · 𝐴 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 | |
| 12 | numma2c.12 | ⊢ ( ( 𝑃 · 𝐵 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) | |
| 13 | 8 | nn0cni | ⊢ 𝑃 ∈ ℂ |
| 14 | 1 2 3 | numcl | ⊢ ( ( 𝑇 · 𝐴 ) + 𝐵 ) ∈ ℕ0 |
| 15 | 6 14 | eqeltri | ⊢ 𝑀 ∈ ℕ0 |
| 16 | 15 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 17 | 13 16 | mulcomi | ⊢ ( 𝑃 · 𝑀 ) = ( 𝑀 · 𝑃 ) |
| 18 | 17 | oveq1i | ⊢ ( ( 𝑃 · 𝑀 ) + 𝑁 ) = ( ( 𝑀 · 𝑃 ) + 𝑁 ) |
| 19 | 2 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 20 | 19 13 | mulcomi | ⊢ ( 𝐴 · 𝑃 ) = ( 𝑃 · 𝐴 ) |
| 21 | 20 | oveq1i | ⊢ ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) = ( ( 𝑃 · 𝐴 ) + ( 𝐶 + 𝐺 ) ) |
| 22 | 21 11 | eqtri | ⊢ ( ( 𝐴 · 𝑃 ) + ( 𝐶 + 𝐺 ) ) = 𝐸 |
| 23 | 3 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 24 | 23 13 | mulcomi | ⊢ ( 𝐵 · 𝑃 ) = ( 𝑃 · 𝐵 ) |
| 25 | 24 | oveq1i | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = ( ( 𝑃 · 𝐵 ) + 𝐷 ) |
| 26 | 25 12 | eqtri | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = ( ( 𝑇 · 𝐺 ) + 𝐹 ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 22 26 | nummac | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |
| 28 | 18 27 | eqtri | ⊢ ( ( 𝑃 · 𝑀 ) + 𝑁 ) = ( ( 𝑇 · 𝐸 ) + 𝐹 ) |